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Block AOR Iteration for Nonsymmetric Matrices 

By Theodore S. Papatheodorou 

Abstract. We consider a class of matrices that are of interest to numerical applications and are 
large, sparse, but not symmetric or diagonally dominant. We give a criterion for the existence 
of (and we actually construct) the inverse matrix in terms of powers of a "small" matrix. We 
use this criterion to find that the spectral radius of the Jacobi iteration matrix, corresponding 
to a block tridiagonal partition, is in general > 1. We also derive conditions (that are satisfied 
in cases of interest to applications) for the Jacobi matrix to have spectral radius = 1. We 
introduce convergent " block AOR" iterative schemes such as extrapolated Jacobi and 
extrapolated Gauss-Seidel schemes with optimum (under) relaxation parameter w= .5. A 
numerical example pertaining to the solution of Poisson's equation is given, as a demonstra- 
tion of some of our hypotheses and results. A comparison with SOR, applied to the 5-point 
finite difference method, is also included. 

1. Introduction. We are concerned with the solution of a certain type of large 
linear systems that are encountered in some applications. One such instance, of 
importance to mathematical software, is the numerical solution of Poisson's equation 
on a square, with Dirichlet conditions, when the collocation method with Hermite 
bicubic elements is used. If the ordinary 5-point finite difference scheme is used for 
this problem, the resulting matrix is symmetric and diagonally dominant. Moreover, 
for the finite difference matrix, iterative methods have been developed and are well 
behaved and analyzed. However, there are instances in which one would prefer to 
use collocation instead of the standard 5-point difference scheme (Houstis et al. [4]) 
and at least one consideration (namely storage, cf. Rice [6]) makes it important to 
develop iterative methods for collocation matrices as well. 

Unfortunately, the well-known iterative techniques, and their analysis, are not 
applicable to collocation matrices that are large and sparse but, in contrast to finite 
difference matrices, are not symmetric or diagonally dominant. For example, the 
point and the block tridiagonal Jacobi iteration matrices, for finite difference 
schemes, have eigenvalues that are real and less than one in modulus. On the other 
hand, these matrices are not even defined for collocation, due to the accumulation of 
zero entries on and around the main diagonal; cf. Figure 2, Section 5. Thus we 
introduce a modification of the standard collocation method (Section 5) that results 
in a well-defined block tridiagonal Jacobi matrix. Still, the only real eigenvalue of 
this matrix is zero, and all nonreal eigenvalues have modulus one. In this paper we 
develop a theory that predicts and explains such events, and, in spite of the lack of 
properties such as symmetry and diagonal dominance, we introduce and analyze 
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convergent iterative schemes for a class of matrices that includes those arising in the 
collocation method. We do that as follows: 

In Section 2 we give two theorems that characterize the inverse matrix in terms of 
a (much smaller) "representative matrix R ". In fact, a formula for constructing the 
inverse is also given, as a generalization of a result of this author [5]. 

In Section 3 we partition the matrix in block tridiagonal form, and, using the 
theorems of Section 2, we find that in general the spectral radius of the correspond- 
ing Jacobi matrix J is, disturbingly, 2 1, since together with i the inverse 1 /4 is also 
an eigenvalue. In the process we find a method for calculating the eigenvalues of J. 

In Section 4, we introduce and investigate "block AOR (Accelerated Overrelaxa- 
tion)" techniques based on the schemes of Hadjidimos [2], [3]. We give conditions 
that are satisfied in practice, for which all the nonreal eigenvalues of J are one in 
modulus and the only real eigenvalues are zero. We also derive a relation between 
the eigenvalues ti of J and the eigenvalues T of the iteration matrix T of each scheme 
with proofs similar to those in Varga [7] and Young [8]. Then we show that 
convergent block AOR schemes do exist for our matrices, by exhibiting two such 
schemes, namely an extrapolated Jacobi and an extrapolated Gauss-Seidel scheme. 
For both, the best relaxation parameter is found to be co = .5. 

In Section 5, we introduce a simple modification of the collocation method and 
demonstrate some facts and proofs of this paper, using a numerical application to 
Dirichlet's problem on the unit square. Finally, we give a comparison with SOR 
applied to the ordinary 5-point finite difference scheme. 

The remainder of this introduction is used to describe the class of matrices G, 
examined in this paper. For reasons of economy we use some notational abbrevia- 
tions: 

Consider a 2 X 4 block 

[a,1 a12 b11 b121 
[AI B] = 

[a21 a22 b21 b2f 

By repeating this block N times and shifting to the right by two columns at each 
repetition, form a (2N) X (2N + 2) matrix 

A B 
A B 

L ~~A B. 
If we delete columns 1 and 2N - 1 of this matrix (elimination of boundary 

degrees of freedom) the resulting matrix is square (2N) X (2N): 

a B 
A Bab 

* 1v [~~~a22 [b2] 

A B 22J 

A b 

For such matrices G we use the abbreviated notation 

(1.1) G [AI B] or G 
a,, 

a2| b'' b2 [lB(2N) or2G a12 b1 b11 [21 a22 21 b22 ](2N) 
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Matrices like this arise in one-dimensional collocation. For two-dimensional prob- 
lems consider the previous definitions with each a,V b1j being changed from a scalar 
to a matrix (2N) X (4N). Then A, B are of "block dimension" 2 X 2 and size 
(4N) X (4N). In order to remind ourselves that we are in the "block" or "two-di- 
mensional" case we write, instead of (1.1), 

(1.2) G [A I B] ?(2N). 

Now G is (4N)2 X (4N)2. 

2. Theorems About the Inverse. For each matrix G of the form 

G =[AI B](2N) or G=[AIB]0(2N) 

we assume that B' exists, and we consider the "representative matrix" 

(2.1) R = -B-'A. 

Depending on the case, R is only 2 X 2 or "block 2 X 2". That is to say R is of 
the type 

-LS21 S22 

where S,J are either scalars or (2N) X (2N) matrices. For the powers of such 
matrices we use the notation 

(2.2) sk\4(k) SL 12] 

with the warning that in general S 4S,k) # S1k. For simplicity S.(') S,. 
Consider first the scalar case, where A, B, R are 2 X 2, regardless of the size 

(2N) X (2N) of G. In a number of applications of interest (cf. [5]) 

(2.3) R22= R11, det(R) = R,,R22- R2R2 = 1. 

A summary of some results in [5] is given by the following: 

THEOREM 2. 1. If either 
(i)R(N) #0,o r 

(ii) R,, I cos(kT/N), k = 1,. . ., 2 N, and (2.3) holds, then G -' exists. 

A formula for constructing G' is also given in [5] and can be recovered as a 
special case of the following two-dimensional generalization: Define the block 2 X 2 
matrices 

G -R' [RIR2 12 0]RNj+{R'J if i>j, 

[R22R|N) o J if i <j, 

i=O,...,IN,j = 1,...,N. 

If R|() is nonsingular, then G is well defined. The matrix G {GjB-'}, i 
O,... .,N, j = 1,. ,N is block (2N + 2) X (2N), each block being of size (2N) X 
(2N). The matrix G' that results from G if we delete row blocks 1 and 2N + 1 is 
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block (2N) X (2N), i.e. of size (4N2) X (4N2), the same as G. The following is a 
generalization of part (i) of Theorem (2.1): 

THEOREM 2.2. If Rf(N) is nonsingular, then G-' exists and 

G-' = G'. 

Proof. By hypothesis G' is well defined. Verify that G'G =. D 
Generalizations in the direction of part (ii) of Theorem 2.1 are also possible but 

not needed here. We only give some properties leading to relations that are 
analogous to (2.3). For matrices encountered in our applications it happens that 

(2.4) [AI B][A A2 A3 -A4] 

each A, being (2N) X (2N). Note that 

(2.5) L, o 
I A I ] 

which gives 

(2.6) R-' o ] R [I 0] 

and if R,- exists, then 

(2.7) Rk QI ISkQ, 

? R12- [S12 S22 [R 21-I R] 

In analogy with (2.3) we note that 

(2.8) det(R)= l, S11S22 - S2IS2I, S1 =S22. 

We close this section with a justification of our assumptions on the existence of 
inverses of smaller matrices involved, such as B and R 2. For the scalar case B is 
2 X 2, R,2 is an easily found scalar and these assumptions are easy to verify. For the 
two-dimensional case and for the applications of interest, not only (2.4) holds but 
also (cf. Section 5) each A, is, in turn, a matrix of the same (scalar) type 

A, = [A I B]2N 

Then Theorem 2.1 applies and the hypotheses of invertibility are again verified. 

3. Eigenvalues of the Jacobi Matrix for the Block Tridiagonal Form. We consider 
the case (2.4), and we take N = 2', 1 = 0, 1, 2,.... We use the following nonsingular- 
ity assumptions as observed in the applications and as justified at the end of the 
previous section: B' is nonsingular, hence R is well defined, R(2N) is nonsingular so 
that G' exists (Theorem 2.2) and the matrix R(') = R12 is nonsingular. 

We partition G into block tridiagonal form 

Di -U1 

(3.1) G. . 

-,DI -U, 
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where by (2.4) 

[ A2 A3] [A2 -A4] [? A] [-A4 0] 

Di-A A,]' 
A 

-A2]' L'[0 A3] I -A2 
0 

This partition corresponds to the splitting 

(3.2) G=D-L-U, 

with the standard (and obvious) definitions of the block diagonal D and the lower 
(resp. upper) parts L (resp. U). 

The Jacobi iteration matrix associated with this partition is 

(3.3) J = I- D-'G = D-'(L + U) 

and is consistently ordered and weakly cyclic of index 2 (cf. [7]). Notice that i is an 
eigenvalue of J if and only if the matrix 

(3.4) Myj=pD-L-U 

is singular. But 

(3.5) Ml, A, IX B]J (2N)' 

with 

(3.6) A B[A3 tA2 ] B4 A, -2: 

By inspection of the block structure of J it is easy to see that ti 0 is an 
eigenvalue of J of multiplicity 4N. Consider now i # 0 and the matrices R = -B-A 
[representing G, with A, B defined in (2.4)] and RI = -B4-'A, [representing My, with 
Ay, By defined in (3.6)]. In analogy with (2.7)-(2.8) we find that the entries R( k?J of 
R' (recall notation of (2.2)) are related with the entries R(k) of Rk through the 
formula 

(3.7) R k Q ]SkQ Lo R ] sy 

Thus, for the entries R(N) , S (N) of the Nth power we obtain R(N) - 
S(N7)R2. By 

Theorem 2.2, for M,, to be singular R (N) must be singular. Since R12 is invertible, 
S(N) must be singular. We now obtain a formula for S(N)- 

Define the polynomials 

(3.8) P() = Z, P 2kk+l (Z) =[p2k ( z)]2 - 2. 

Use induction to show that 

S(N) = S (2) ( s(21) + S(2.-) ... (S2) (2+ + 
+ =12- 1 2 )L11 S, 22 J L ? 11 + - 22)(S2kII + S72k22)) 

S~1 II + S 122 = + - )R11 ' L I( I + L,222 tL I I tL, )+ (22) - 2I, 
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and combine these relations with (3.8) to obtain 
1- 1 

(3.9) Sj 12 p2A(R1j), (N=2N), 
k =0 

where a = u + 1/. 
We seek all values of a that make each of the factors in (3.9) singular. Thus, if r is 

an eigenvalue of RI1, then we seek the 2k values of a for which p2A(ar) = 0, 
k = 0,...,/ - 1. If we repeat for all 2N eigenvalues r of RII, then we obtain 
2N2 - 2N values of a. For each such a we obtain two values of y (jt and 1/y). 
Hence we find all the remaining 4N2 - 4N eigenvalues. Summarizing this discussion 
we have 

THEOREM 3.1. Let J be the Jacobi iteration matrix corresponding to the tridiagonal 
splitting (3.1)-(3.3) of G, with eigenvalues denoted by y. 

(i))u = 0 is an eigenvalue of multiplicity 4N, 
(ii) the remaining 4N2 - 4N eigenvalues are found by first solving 

(3.10) p2A(ar) 0, 

(P2A defined in (3.8)), for each eigenvalue r of R11 and each k - 0,. . . ,I - 1, (2' - N), 
and then solving 

(3.11) +1/=a 

(iii) together with each eigenvalue t 7# 0, 1/JL is also an eigenvalue corresponding to 
the same a, hence 

(iv) the spectral radius of J is ' 1. 

Thus, in view of part (iv), we are discouraged from using standard iterative 
techniques (although they may still converge), and we turn our attention to the more 
general AOR schemes of the following section. 

4. Convergent Block AOR Schemes. AOR (Accele'rated Overrelaxation) schemes 
are defined by Hadjidimos [2], [3]. Our block counterpart of these schemes for the 
case of G of (3.1) has the iteration matrix 

T= (D -pL) '[(l - w)D + (, - p)L + wU], 

and, of course, we are interested in schemes for which T f T1, for all eigenvalues T of 
T. The pair (w, p) consists of the "relaxation" and "acceleration" parameters, and 
well-known techniques are recovered for special combinations of o, p. For instance, 
the pairs (1, 0), (1, 1) and (w, co) give the Jacobi, Gauss-Seidel and SOR methods. 
For more details see [3]. 

First, we relate the eigenvalues T of T to the eigenvalues u of the Jacobi matrix J 
by the following 

THEOREM 4.1. T I - co with multiplicity 4N, and 

(4.1) (T + c - 
1)2 = (PT + Co - 

p)WU2 

with multiplicity 2N2 - 2N. 

Proof. The proof follows the same pattern as in [7]: 

Det[(T + CO - 1)I - (PT +w - p)D-'L - coD-U] 0 0, 
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and, since J = D - 'L + D -1 U is consistently ordered weakly cyclic of index 2, 

Det[(T + W - )I- ((PT + W _ P)Wj 1/2j] =0. 

By Romanovsky's Theorem 

2N2-2N 

(T+o- 1)4N {(T + - 1)2 -(pT + o - 
p)W1,} = 0 

where only one of the two eigenvalues ? ji is counted. This completes the proof. D 
In the special case of the SOR method, p = , we recover the known formula (cf. 

[7]) 

(4.2) (T + W - 
1)2 TW2P2 

In our case however, we cannot proceed with assumptions that, e.g. jt is real. In fact, 
for the matrices we are interested in, the opposite is true, namely, the only real 
eigenvalue is t= 0. We proceed to give some realistic conditions (satisfied in our 
applications) that will result to some convergent block AOR schemes: 

THEOREM 4.2. (i) If all the eigenvalues r of RI1 are real, then all the nonreal 
eigenvalues of the Jacobi matrix J lie on the circumference of the unit circle. (ii) If in 
addition I r 2 1, then the only real eigenvalue of J is j = 0. 

Proof. Recalling Theorem 3. 1-(ii), fix r and consider solving (3.10). To do so, 
notice first that for each complex x there exists at least one y such that 

(4.3) q(y)1 y +-= X. 
y 

Then calculate successivelyp l(x) x q(y), p2(X) = q(y2), and inductively 

P2k(X) q(y2 k) = y2k + 1/y2k. 

Since q(z) = 0 if and only if z = i, since the same x is produced in (4.3) by both 
y and l/y and, finally, since l/y =- if y is such that q(y2 ) 0, the solutions of 

P2ko(ar) = 0 are found to be 

(4.4) or = 
2CoS(Ok,m), k, m (2 

k+ 
1) , m = 0 ...2k- 1. 

Hence, for each fixed r, we obtain from (3.1 1) 

1 2 
(4.5) ju + - f -cos(Ok,m). tir 

If r is real, then ju + 1/ju is real, which means that either jt is real or I It 1, proving 
part (i). In fact, setting c =cos(Ok,m), we obtain from (4.5): 

(4.6) c1 = / ) I 

Thus, if I c/r 1< 1, jt cannot be real. Since c I ? 1 by definiLion of 6k m in (4.4) the 
condition I r I2 1 is sufficient for jt to be nonreal, proving part (ii). EL 

Fortunately, the hypotheses of Theorem 4.2 are observed to be true in some 
applications (see for instance, Section 5). With this in mind, we proceed to establish 
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the existence of converging AOR schemes by exhibiting two such schemes, namely: 
Scheme EJ: Extrapolated Jacobi (w, p) = (, 0). 
Scheme EGS: Extrapolated Gauss-Seidel (w, p) =( , 1). 
For both schemes we have the initial standard restriction 

0 < X < 2 
imposed by the relationship T = - X of Theorem 4.1. 

THEOREM 4.3. (i) M= 1 and u= -1 are not eigenvalues of J. (ii) If all the 
eigenvalues j =# 0 of J lie on the circumference of the unit circle (see Theorem 4.2 for 
sufficient conditions), then both schemes EJ and EGS converge for all 0 < o < 1 with 
best (under) relaxation value = 

Proof. ju = 1 cannot be an eigenvalue of J because G is nonsingular. J is weakly 
cyclic of index 2, hence together with jt has the eigenvalue -jt. Since t = 1 is not an 
eigenvalue, it follows that t= -1 is not an eigenvalue. To show part (ii) use the 
transformation 

(4.7) T= (1- W) + WP 

in (4.1) to find 

(4.8) 2 / 3 (p;2 +p24 + 4( -p)P2) 

For EJ, p = 0, hence /3 - =+. For EGS, p = 1, hence /3 0 or j2. In both cases 
/3 #& 1 by part (i). Thus, the segment joining 1 and /3 in the complex plane is 
nontrivial, and /3 lies on the circumference of the unit circle for EJ and EGS. At the 
same time, by (4.7), T lies on this segment (which is entirely inside the unit circle) for 
0 < o < 1 and therefore IT < 1, with the smallest possible value of T I being 
obtained at the midpoint of the segment, i.e. with X =. 

- i 

5. Application: Poisson's Equation on a Square. In this section we give an 
application of the preceding results to the problem 

(5.1) v2u =f, onQ : [0,1] X [0,1], 

(5.2) u = g, on aQ, 

when the collocation method with Hermite bicubic elements is used. In order to do 
so we first give a brief description of this method and our modification of it that 
leads to matrices with the block structure of Sections 1 and 2. 

Standard Collocation. Consider a uniform grid with spacing h := 1/N, where N is 
the same as in the preceding sections. The coordinates of the nodes are (xl, y,), 
where xi = (i - I)h, yJ = (j - I)h, i, j = 1,...,(N + 1). We define the generating 
cubic polynomials 4 and 4 on [0, 1] by 

(5.3) k(a) := (1- )2(1 + 2a), ((a) ( 1- )2, 0 < 1. 

Let t denote either x or y, introduce the "fictitious nodes" to = -h and tN+2 

1 + h and define the 2(N + 1) functions Bk, k = 1,...,2(N + 1) of t E R as 
follows: 

(-( t if t < t < tm, 
B2m-i(t) = (am(t)), if tm < t < tm+i1 

t 0, otherwise, 
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0 h (t ( t ), if tni _-l t tni 
B2m(t) {h4(atnK)), if tn ? t - tl 

U 0, otherwise, 

where m = 1,. N + 1 and a17(t) : (t- ) t h. 
It follows that Bk E C'(R), k 1,. . . 2(N + 1) and that 

B2 I (tJ= 8g,, -B21m-(tI) = ?0 

(5.4) dt m,j =1. (N 1), 

B2mn1( t ) -dB2 n tv) = 8i1 -, o, dt fnt) 

where 8-1 denotes the " Kronecker delta". 
We then seek an approximate solution of (5.1)-(5.2) in the form: 

2(N+ 1) 

(5.5) UN(X, y) a=E (,,B,(x)B,(y). 

Note that by (5.4): 
(5.6) a2, _21-= UN(XI, y) , a 12J D,uN (x,, VJ) 

2 I - DxuN(x2j y1) (x2, 2J D V,UN(X!, Y,). 

From (5.6) we see that four degrees of freedom (d.o.f.), or unknowns, ak,.,, 
k = 2i - 1, 2i, m 2j - 1, 2j, are associated to each node (x,, yJ) and that they 
represent values of UN and its derivatives at this node. For the boundary nodes, some 
of the d.o.f. are eliminated beforehand by use of the boundary conditions. One way 
to do this is by interpolation of the function g, of (5.2). (A simple version of this, 
brief enough to be described here, is to use also the derivatives of g, if they exist: For 
example, for the boundary x = 0 we use axl 2J g(0, y,) and a(xl2/ = D1,g(O, yJ), 
j = 1,... .,N + 1.) After the elimination of the boundary d.o.f. we are left with 
n = 4N 2 unknowns, and we need to construct the same number of equations, by use 
of the operator equation (5.1), in Q ("interior collocation"). This is done by choosing 
4 points in each of the N2 elements I,, = [x,, x,+,] X [Y_1, y+?] and requiring that 
(5.1) is exactly satisfied by UN of (5.5) at these points. These are the so-called "Gauss 
points" in each I,,, i = 1,...,N, j 1 1,...,N, i.e. their coordinates (,,k, 'N m), 

k, m = 1, 2, are the roots of the Legendre polynomial of degree two, shifted over the 
corresponding subintervals. For example, (,,k = h(2i - 1 ?4 r//3)/2, where the 
"- " is used for k 1 I and the " +" for k = 2. Note that we have a one-to-one 
correspondence between collocation points and equations. Thus, a numbering of the 
equations is produced when we number the collocation points. A numbering of the 
unknowns is produced when we number the nodes and count the unknowns 
associated with each node in the specific order that they appear in (5.6). Standard 
collocation uses the numbering demonstrated in Figure 1, for N = 3. 

It should be clear that within each element IJ, UN is determined in (5.5) by use of 
only 16 d.o.f., the ones that are associated with the four nodes of IJ. This is because 
the remaining basis functions B in (5.5) vanish inside IJ. Therefore the large 
collocation matrix is banded, but otherwise, as we can observe in Figure 2, it has 
many zeros on and around the diagonal, it is not symmetric and, in summary, unfit 
for iteration. The situation worsens for larger N. Also, the entries of this collocation 
matrix depend on h. 
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x < x 6 x 17 A 18 x 29 x 30 x x x 36 

10 12 22 24 34 36 

9 11 21 23 33 35 

x x 4 5 13 14 15 16 25 26 27 28 x x 34 35 

6 8 18 20 30 32 

5 7 17 19 29 31 

x x 2 3 9 10 11 12 21 22 23 24 x x 32 33 

2 4 14 16 26 28 

1 3 13 15 25 27 

x x x 1 x 7 x 8 x 19 x 20 x x x 31 

FIGURE 1 (N = 3) 

Numbering of unknowns and equations for standard collocation 

(x: d.o.f. elminated beforehand) 

Interior collocation equations 

1 2 3 
1 2345678901 23456783901 234567890123456 

1 dxx0OOxxxxxx. 
2 xdxOOOxxxxxx. 
3 xxdxxxxxxd... 
4 xxxOOOxxxxxx. 
5 .xxxdOOOxxxxxxxx. 
6 .xxxxOOOxxxxxxxx . 
7 .xxxxOOOxxxxxxxx . 
8 .xxxxOOOxxxxxxxx . 
9 ...xxx000000xxxxxx . 
10 ... xxxOOOOOOxxxxxx . 
11 ... xxxOOOOOOxxxxxx . 

12 ...xxxOOOOOOxxxxxx . 
13 ...... xxxxxxOOOOOOxxxxxx . 
14 ...... xxxxxxOOOOOOxxxxxx. 
15 ...... xxxxxxOOOOOOxxxxxx . 
16 ...... xxxxxxOOOOOOxxxxxx . 
17 ........ xxxxxxxxOOOOxxxxxxxx . 
18 ........ xxxxxxxxOOOOxxxxxxxx . 
19 ........ xxxxxxxxOOOOxxxxxxxx . 

20 ........ xxxxxxxx xxxxxxxxx........ 
21 ............ xxxxxx00 0xxxxxx .... 
22 ............ xxxxxx OOOOOOxxxxxx . 
23 ............ xxxxxx OOOOOOxxxxxx . 
24 ............ xxxxxx OOOOOOxxxxxx . 
25 ........... xxxxxx xxx... 
26 ........... xxxxxx xxx... 
27 ........... xxxxxx xxx... 
28 ........... xxxxxx xxx... 
29 .................... xxxxxxxxOOOxxxx. 
30 .................... xxxxxxxxOOOxxxx. 
31 .................... xxxxxxxxOOOxxxx. 
32 .................... xxxxxxxxOOdxxxx. 
33 ........................ xxxxxxOOOxxx 
34 ........................ xxxxxxOOOdxx 
35 ........................ xxxxxxOOOxdx 
36 ........................ xxxxxxOOOxxd 

FIGURE2(N= 3) 

Structure of the standard collocation matrix 
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x x x 6 x 12 x 18 x 24 x 30 x x x 36 

6 12 18 24 30 36 

5 11 17 23 29 35 

x x 4 5 10 11 16 17 22 23 28 29 x x 34 35 

4 10 16 22 28 34 

3 9 15 21 27 33 

x x 2 3 8 9 14 15 20 21 26 27 x x 32 33 

2 8 14 20 26 32 

1 7 13 19 25 31 

x x x 1 x 7 x 13 x 19 x 25 x x x 31 

FIGURE 3 (N = 3) 

Numbering of unknowns and equations for modified collocation 

1 2 3 
]23456 789012 345678 901234 567890 12345E 

1 dxx ... xxx... xxx ......... ...... ...... 
2 xdx... xxx... xxx ............... ...... 
3 .xdxx. .xxxx. .xxxx. ... ...... ...... 
4 .xxdx. .xxxx. .xxxx. ... ...... ...... 
5 ... xdx ...xxx ...xxx ...... ...... 
6 ... xxd ... xxx ... xxx. .. ...... 

7 xxx... dxx... xxx ...... ...... ...... 
8 xxx... xdx... xxx ...... ...... ...... 
9 .xxxx. .xdxx. .xxxx. ...... ...... 
10 .xxxx. .xxdx. .xxxx. ...... ...... 
11 ...xxx ...xdx ...xxx.... 
12 .xxx ...xxd ... xxx ...... .. ...... 

13 . xxx... dxx... xxx... xxx .. ...... 
14 . xxx... xdx... xxx... xxx .. ...... 
15. . xxxx. .xdxx. .xxxx. .xxxx . ...... 
16. . xxxx. .xxdx. .xxxx. .xxxx . ...... 
17. ... xxx ...xdx ... xxx . xxx .xx 
18 . xxx...xxd ...xxx ...xxx . 

19 . xxx... xxx... dxx... xxx . ..... 
20 . xxx... xxx... xdx... xxx . ..... 
21. . xxxx. .xxxx. .xdxx. .xxxx . ...... 
22. . xxxx. .xxxx. .xxdx. .xxxx. 
23.xxx ... xxx ... xdx ... xxx . 
24.xxx ... xxx ... xxd ... xxx . 
25 .xxx... dxx... xxx... 
26 .xxx... xdx... xxx... 
27 ...... ...... .. . xxxx. .xdxx. .xxxx. 
28 ...... ...... .. . xxxx. .xxdx. .xxxx. 
29 ...... .. ...... ... xdx ...xxx 
30 ...... .. ...... ... xxd ...xxx 

31 ...... .. ...... xxx... xxx... dxx... 
32 .xxx... xxx... xdx... 
33 ...... .. ...... . xxxx. .xxxx. .xdxx. 
34 ...... .. ...... . xxxx. .xxxx. .xxdx. 
35 ......xxx ....xxx ... xdx 
36 ...... .. ...... .. . .. xxx ... xxd 

FIGuRE 4 (N = 3) 

Structure of the new collocation matrix 
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Modified Collocation. Our modification of the standard collocation method con- 
sists of the following simple changes: First, we use a different numbering of 
equations (collocation points) and unknowns as demonstrated in Figure 3, for 
N = 3. As a result the new matrix has the block structure of Sections 1 and 2, as can 
be seen from Figure 4. 

Next, instead of the functions B we use 

B2mn- I := B2mI B2r1 m h 2m 1 

and we compensate by replacing (5.5) and (5.6) accordingly: 
N+ I 

(5.7) UN(X, y) = aE ot,yB,(x)B1(y), 

at21- l,2,-, l a ?2l- ,2_/- , l a ?2l- ,2, h a-21- 1,2y X 

at2l,2,-I = ha-21,2X-,, ll a21,2= h 2212 j 

As a result, after the number 1/(9h2) is factored out, the entries of the new matrix G 
are independent of h. Now 

(5.8) G A2 A3 -A [A A4 A1 -2 0(2N) 

where each A, i = 1, 2, 3, 4, is (2N) X (2N) and has the same structure 

a,F a2 a3 -a4] 
(5.9) Al 

[a3 a4 a, -a2 (2N) 

The values of the entries of each Al are given in Table 1, where 

(5.10) t=3+ 3, r=24+18F3 , s=12+8F3, q=24, v=3+232F, 

and where 
- 

denotes the "conjugate" of P = PI + P2v i.e.p = - P2rT 
TABLE 1 

Entries of the (2N) X (2N) blocks of (5.8) and (5.9) 

a, a2 a3 -a4 

Al -r -s q -t 
A2 -S -v t 0 

A3 q t -r s 
-A4 -t 0 s -r 

We may now apply our theory to this G. One outcome is that of memory 
economization. If N = 32, for instance, and double precision on a 32-bit machine is 
used (single precision is of no use, in general, for the high order collocation with 
large N) the EGS scheme reduces the memory requirements from - 7 million bytes 
of usual banded mode to only 33 thousand bytes. For more software details see 
(1]. 

For a numerical experiment we take N = 4. Easily extracted from the proof of 
Theorem 4.2 are the 4N= 16 eigenvalues ,u= 0 and the 4N= 16 eigenvalues 
, = +i (8 each) of the Jacobi matrix J. The remaining 4N2 - 32 = 32 eigenvalues 
are shown in Table 2, from where we can verify that all have modulus one and that 
together with each eigenvalue , we also have the eigenvalues -,u 14 =, and -,u. 
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TABLE 2 
32 of the eigenvalues of J for N = 4 

-0.533825 + 0.845595i -0.037216 + 0.999307i 
-0.533825 - 0.845595i -0.037216 - 0.999307i 

0.533825 + 0.845595i -0.033636 + 0.999434i 
0.533825 - 0.845595i -0.033636 - 0.999434i 

-0.282037 + 0.959404i -0.035643 + 0.999365i 
-0.282037 - 0.959404i -0.035643 - 0.999365i 

0.282037 + 0.959404i 0.054393 + 0.998520i 
0.282037 - 0.959404i 0.054393 - 0.998520i 

-0.135009 + 0.990844i 0.038500 + 0.999259i 
-0.135009 - 0.990844i 0.038500 - 0.999259i 

0.135009 + 0.990844i 0.033636 + 0.999434i 
0.135009 - 0.990844i 0.033636 - 0.999434i 

-0.054393 + 0.998520i 0.037216 + 0.999307i 
-0.054393 - 0.998520i 0.037216 - 0.999307i 
-0.038500 + 0.999259i 0.035643 + 0.999365i 
-0.038500 - 0.999259i 0.035643 - 0.999365i 

A geometric interpretation of the proof of Theorem 4.3 for the EJ scheme (replace 
,u by t2 for EGS) is given in Figure 5. 

(-1,0) (,) 

(0,-] ) 

FIGURE 5 
Eigenvalues of J and TEJ for N 4 and c =b= .5 
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On the unit circle we find the eigenvalues ,u of J. All the eigenvalues T of the 
iteration matrix TEJ lie in the interior of the unit circle and on the smaller circle of 
radius 0.5 and center 0.5 + Oi. 

There are two kinds of comparisions that we make: For the first, we use two 
different iterative schemes, EJ and EGS and compare them for the same matrix G 
and for each N 2, 4, 8, 16,.... By use of (4.7) with c = .5 we find that the spectral 
radii of TEJ and TEGS are 

(5.11) SPN(TE) 
I + Real(p)N, SPN(TEGS) = Real(A) N, 

where Real(M)N denotes the maximum real part of all the eigenvalues IL of J, for each 
N, and is always in [0, 1). We conclude that SpN(TEGS) < SpN(TE), hence EGS is 
better than EJ. For N = 4, we find from Table 2 that Real(M)N - .533825 and by 
(5.11) 

(5.12) Sp4(TEJ) - .875735, Sp4(TEGS) - .533825. 

In fact, we have numerical evidence to conjecture that for all N and for this G, the 
EGS scheme with co-cob = 0.5 is the best of all block AOR schemes. 

Our second comparison concerns two iterative schemes, used for two different 
methods of discretizing (5.1)-(5.2). In this case the relative performance of the two 
discretization methods is taken into account, in that we first prescribe an accuracy, 
within which the exact solution of the problem is to be approximated by the 
respective solutions of the two methods. It is assumed that a norm (such as the 
discrete jj Ilo) is specified. We then again compare the spectral radii of the 
corresponding iteration matrices, taking into account that matrix sizes are, in 
general, different for the two methods and for the same accuracy. For a numerical 
example consider (5.1)-(5.2) with 

f(x, y) = 6xyeXeY(xy + x + y-3), g(x, y) = 0. 

This example is taken from the "sample problem space" in Houstis et al. [4], where 
an extensive study of methods for solving more general elliptic problems may be 
found. The exact solution is u(x, y) = 3exeY(x - x2)(y - y2). We consider two 
methods, collocation and the ordinary 5-point finite difference method. Let NC and 
NF be the respective numbers of grid subdivision. The maximum errors ec and CF are 
given in Table 3. 

TABLE 3 
Maximum error for the finite difference and collocation methods 

(Houstis et al. [4, pp. 343-344]) 

NF 5 7 10 13 15 17 
Finite Difference 

EF .011000 .005190 .002780 .001630 .001220 .000965 

NC 3 4 5 6 7 8 

Collocation 
EC .000448 .000135 .000050 .000028 .000015 .000009 
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As expected theoretically, we observe that as NF, NC grow larger, the numerical 
results of Table 3 can be interpolated by the standard formulae 

(5.13) EF - bFNF2, EC bCNj4, 

where, for this problem, bF ; .28, bc - .036. In order to proceed with the compari- 
son we choose NC = 4, we specify Ec C EF = .000135 and we determine the corre- 
sponding NF from (5.13) to be 

NF bF/cF - 45.5. 

Hence, let us use NF = 45, with the observation that small variations in bF, NF do 
not significantly affect the outcome of the comparison. 

The well-known SOR scheme (corresponding to the standard block tridiagonal 
partition) is better than EGS, for the finite difference matrix. Hence, for this matrix, 
we choose SOR and compare it with EGS for collocation. Let JF, TsOR be the 
matrices for the Jacobi and SOR schemes for finite differences. Recall (cf. [7]) that 

(5.14) c cos(7TI/NF), SP(JF) 2- 

<ob = 2 , ~sp(Ts0R) =<^ 
1 + )1 - SP( JF)2 

Using NF= 45, i.e. c .997564, we calculate from (5.14) that 

sp(TsOR) = .820713, 

which, as compared with the collocation results in (5.12), shows that the SOR 
scheme for the finite difference method is better than the EJ scheme but worse than 
the EGS scheme of collocation. If we measure the improvement by the ratio ([7]) 

-ln(sp(TEGS)) . *627687 3.18 
-ln(sp(TSOR)) .197582 

we find that SOR requires about three times more iterations than EGS in order to 
achieve a prespecified accuracy. 
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